Rheologica Acta, Vol.44, No.4, 418-426, 2005
The effect of slip in the flow of a branched PP melt: experiments and simulations
In this paper visualisation and direct velocity profile measurement experiments for a branched polypropylene melt in a 10:1 axisymmetric contraction demonstrate the onset of wall slip. Video processing of the flow shows the formation of vortices and their diminution with increasing flow rate. Numerical simulations using a multimode K-BKZ viscoelastic and a purely viscous (Cross) model-both of them incorporating a nonlinear slip law-were used to predict the flow kinematics and dynamics as well as to deduce the slip velocity function by performing fitting to the velocity profiles. It was found that the numerical predictions agree well with the experimental results for the velocity profiles, and vortex formation, growth and reduction. It is suggested that such experiments (visualisation of entrance flow and direct velocity profile measurement) can be useful in evaluating the validity of constitutive equations and slip laws in the flow of polymer melts through processing equipment.