화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.26, 12976-12981, 2005
Enhancement of the fluorescence of the blue fluorescent proteins by high pressure or low temperature
Green fluorescent proteins bearing the Y66H mutation exhibit strongly blue-shifted fluorescence excitation and emission spectra. However, these blue fluorescent proteins (BFPs) have lower quantum yields of fluorescence (Phi(f) similar to 0.20), which is believed to stem from the increased conformational freedom of the smaller chromophore. We demonstrate that suppression of chromophore mobility by increasing hydrostatic pressure or by decreasing temperature can enhance the fluorescence quantum yield of these proteins without significantly affecting their absorption properties or the shape of the fluorescence spectra. Analysis of the fluorescence lifetimes in the picosecond and nanosecond regimes reveals that the enhancement of the fluorescence quantum yield is due to the inhibition of fast quenching processes. Temperature-dependent fluorescence measurements reveal two barriers (similar to 19 and 3 kJ/mol, respectively) for the transition into nonfluorescing states. These steps are probably linked with dissociation of the hydrogen bond between the chromophore and His148 or an intervening water molecule and to the barrier for chromophore twisting in the excited state, respectively. The chromophore's hydrogen-bond equilibrium at room temperature is dominated by entropic effects, while below similar to 200 K the balance is enthalpy-driven.