Journal of the American Chemical Society, Vol.127, No.26, 9410-9415, 2005
Tandem sequence of cross metathesis-ring-closing metathesis reaction of alkynyl silyloxy-tethered enynes
A tandem cross metathesis (CM)-ring-closing metathesis (RCM) sequence to form cyclic siloxanes is reported. This new enyne metathesis platform expands the scope and utility of the regio- and stereoselective cross metathesis reaction between silylated alkynes and terminal alkenes. The initial cross metathesis was directed to occur on the alkyne by employing sterically hindered mono-, di-, and trisubstituted alkenes tethered to the alkyne via silyl ether. The regio- and stereoselectivity feature of the initial CM step in this tandem CM-RCM process is identical to that of the CM reactions of silylated alkynes and alkenes. This tandem sequence provides both synthetically useful silylated 1,3-diene building blocks and insights into the reaction mechanism of the enyne metathesis reaction.