Langmuir, Vol.21, No.14, 6289-6295, 2005
Temperature-dependent formation of octadecylsiloxane self-assembled monolayers on mica as studied by atomic force microscopy
We have investigated the growth of octadecylsiloxane (ODS) self-assembled monolayers on mica. Freshly cleaved muscovite mica and octadecyltrichlorosilane (OTS) dissolved in toluene (c = 1.0 mmol/L) have been used as substrate and precursor, respectively. The water content of the adsorption solution was between 14.6 and 16.6 mmol/L. Adsorption experiments were carried out in a temperature range between 5 and 45 degrees C, and the obtained submonolayer ODS films were characterized with atomic force microscopy (AFM). Besides the morphology of the films, also information on the surface coverage has been obtained by quantitative evaluation of the AFM images. Depending on the temperature, evidence for both ordered and disordered expanded ODS phases has been found. The pronounced maximum in surface coverage -in contrast to adsorption on silicon substrates - at a temperature of about 27 degrees C and the different morphology of the submonolayer films as compared to silicon substrates could be explained in terms of a deposition, diffusion, and aggregation (DDA) model.