Inorganic Chemistry, Vol.44, No.16, 5600-5611, 2005
Preparations and characterizations of bichromophoric systems composed of a ruthenium polypyridine complex connected to a difluoroborazaindacene or a zinc phthalocyanine chromophore
This paper describes the synthesis of a new series of molecules composed of a ruthenium cation liganded by a chloro or a thiocyanato, a 4,4'-(diethoxycarbonyl)-2,2'-bipyridine, and a 2,2':6',2"-terpyridine substituted in its 4' position by a difluoroborazaindacene or a zinc phthalocyanine. A set of conditions are reported to conveniently synthesize these dyads by a Stille cross-coupling reaction between the trimethyltin derivative of the organic chromophore and the corresponding ruthenium complex with 4'-bromo-2,2':6',2"-terpyridine and 4,4'-(diethoxycarbonyl)-2,2'-bipyridine. The dyads were studied by UV-visible absorption spectroscopy, steady-state fluorescence, and electrochemistry. The results of these studies indicate strong electronic coupling between the zinc phthalocyanine unit and the ruthenium complex but weakly electronically coupled systems in the case of dyads containing a difluoroborazaindacene unit. The new bichromophoric systems display strong absorbance in the visible spectrum, An efficient quenching of the fluorescence of the organic chromophore by the nearby ruthenium complex was also observed in all of the dyads. In dyads connected to the borazaindacene, excitation spectra indicate efficient photoinduced energy transfer from the borazaindacene to the ruthenium complex.