Journal of Physical Chemistry B, Vol.109, No.31, 15107-15117, 2005
Structure and thermodynamics of protein-polymer solutions: Effects of spatially distributed hydrophobic surface residues
Protein-polymer association in solution driven by a short-range attraction has been investigated using a simple coarse-grain model solved by Monte Carlo simulations. The effect of the spatial distribution of the hydrophobic surface residues of the protein on the adsorption of weakly hydrophobic polymers at variable polymer concentration, polymer length, and polymer stiffness has been considered. Structural data on the adsorbed polymer layer and thermodynamic properties, such as the free energy, energy, and entropy, related to the protein-polymer interaction were calculated. It was found that a more heterogeneous distribution of the surface residues promotes adsorption and that this also applies for different polymer concentrations, polymer chain lengths, and polymer flexibilities. Furthermore, the polymer adsorption onto proteins with more homogeneous surface distributions displayed larger sensitivity to polymer properties such as chain length and flexibility. Finally, a simple relation between the adsorption probability and the change in the free energy was found and rationalized by a simple two-state adsorption model.