화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.109, No.34, 7764-7774, 2005
Theoretical studies of the modulation of polymer electronic and optical properties through the introduction of the electron-donating 3,4-ethylenedioxythiophene or electron-accepting pyridine and 1,3,4-oxadiazole moieties
One serious problem associated with polyfluorene and derivatives (PFs) as blue luminescent polymers is the significant energy barrier for hole or electron injections; thus they usually face charge injection and transport difficulties with the currently available cathode and anode materials. The incorporation of an electron-donating or -accepting unit is expected to improve the recombination of the charge carriers. In this paper, we apply quantum-chemical techniques to investigate three fluorene-based copolymers, copoly(2,5-ethylenedioxythiophene-alt-9,9'-dimethylfluorene) (PEF), copoly(2,5-pyridine-alt-9,9'-dimethylfluorene) (PPyF), and poly[(fluorene-2,7-diyl)-alt-(1,3,4-oxadiazole-2,5-diyl)] (PFO), in which Delta(H-L) [the energy difference between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), when n = infinity], the lowest excitation energies (E-g), ionization potentials (IP), electron affinities (EA), and lambda(abs) and lambda(em), are fine-tuned by the regular insertion of electron-donating unit 3,4-ethylenedioxythiophene (EDOT) or electronwithdrawing units pyridine and 1,3,4-oxadiazole. The results show that the alternate incorporation of electrondonating moiety EDOT increases the HOMO energy and thus reduces the IPs, and consequently the hole injection was greatly improved. On the other hand, even though both kinds of charge carriers will improve the electron-accepting ability, the results show that electron-withdrawing moieties greatly facilitate the electrontransporting. Especially in PFO, the highly planar structural character resulted from the strong push-pull effect between the fluorene ring and the 1,3,4-oxadiazole ring and a weak interaction between the nitrogen and oxygen atoms in 1,3,4-oxadiazole ring and the hydrogen atom of the fluorene ring, significantly lowering the LUMO energy levels and thus improve the electron-accepting and transporting properties by the low LUMO energy levels.