화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.32, 15278-15287, 2005
Synthesis, characterization, and luminescence properties of the ternary europium complex covalently bonded to mesoporous SBA-15
A novel mesoporous SBA-15 type of hybrid material (phen-SBA-15) covalently bonded with 1,10-phenanthroline (phen) ligand was synthesized by co-condensation of tetraethoxysilane (TEOS) and the chelate ligand 5-[N,N-bis-3-(triethoxysilyl)propyl]ureyl-1,10-phenanthroline (phen-Si) in the presence of Pluronic P123 surfactant as a template. The preservation of the chelate ligand structure during the hydrothermal synthesis and the surfactant extraction process was confirmed by Fourier transform infrared (FTIR) and Si-29 MAS NMR spectroscopies. SBA-15 consisting of the highly luminescent ternary complex Eu(TTA)(3)phen (TTA = 2-thenoyltrifluoroacetone) covalently bonded to a silica-based network, which was designated as Eu(TTA)(3)phen-SBA-15, was obtained by introducing the Eu(TTA)(3)center dot 2H(2)O complex into the hybrid materials via a ligand exchange reaction. XRD, TEM, and N-2 adsorption measurements were employed to characterize the mesostructure of Eu(TTA)(3)phen-SBA-15. For comparison, SBA-15 doped with Eu(TTA)(3)center dot 2H(2)O and Eu(TTA)(3)phen complexes and SBA-15 covalently bonded with a binary europium complex with phen ligand were also synthesized, and were named SBA-15/Eu(TTA)(3), SBA-15/Eu(TTA)(3)phen, and Eu-phen-SBA15, respectively. The detailed luminescence studies on all the materials showed that, compared with the doping sample SBA-15/Eu(TTA)(3)phen and binary europium complex functionalized sample Eu-phen-SBA-15, the Eu(TTA)(3)phen-SBA-15 mesoporous hybrid material exhibited higher luminescence intensity and emission quantum efficiency. Thermogravimetric analysis on Eu(TTA)(3)phen-SBA-15 demonstrated that the thermal stability of the lanthanide complex was evidently improved as it was covalently bonded to the mesoporous SBA-15 matrix.