Journal of Physical Chemistry B, Vol.109, No.33, 15849-15859, 2005
Mimicking the properties of antifreeze glycoproteins: Synthesis and characterization of a model system for ice nucleation and antifreeze studies
Synthesis of beta-D-Gal-(1 -> 3)-beta-D-GalNAc coupled to HOC2H4NHCOC15H30SH is described. This compound was coadsorbed at various proportions with C2H5OC2H4NHCOC15H30SH to form statistically mixed self-assembled monolayers (SAMs) on gold in an attempt to mimic the properties of the active domain in antifreeze glycoproteins (AFGPs). The monolayers were characterized by null ellipsometry, contact angle goniometry, X-ray photoelectron spectroscopy, and infrared reflection-absorption spectroscopy. The disaccharide compound adsorbed preferentially, and SAMs prepared at a solution molar ratio > 0.3 displayed total wetting. The mixed SAMs showed well-organized alkyl chains up to a disaccharide surface fraction of 0.8. The amount of gauche conformers in the alkyls increased rapidly above this point, and the monolayers became disordered and less densely packed. Furthermore, the generated mixed SAMs were subjected to water vapor at constant relative humidity and the subsequent ice crystallization on a cooled substrate was monitored via an optical microscope. Interestingly, rapid crystallization occurred within a narrow range of temperatures on mixed SAMs with a high disaccharide content, surface fraction > 0.3. The reported crystallization temperatures and the ice layer topography were compared with results obtained for a much simpler reference system composed of -OH/-CH3 terminated n-alkanethiols in order to account for changes in topography of the water/ice layer with surface energy. Although preliminary, the obtained results can be useful in the search for the molecular mechanism behind the antifreeze activity of AFGPs.