Journal of Physical Chemistry B, Vol.109, No.34, 16363-16371, 2005
Surface photochemistry of Rh(CO)(2) on zeolite Y-production of a stable coordinatively unsaturated rhodium monocarbonyl surface species at room temperature
The photochemical production and chemical reactivity of a new coordinatively unsaturated rhodium monocarbonyl species on the surface of dealuminated zeolite Y over a temperature range of 300-420 K and a pressure range from 10(-5) to 20 Torr has been studied. Using high vacuum techniques and transmission infrared spectroscopy, ultraviolet irradiation (350 +/- 50 nm) of supported Rh(CO)(2) surface species led to the production of stable, but reactive, =Rh(CO) surface species, characterized by an infrared band at 2023 cm(-1). The coordinatively unsaturated =Rh(CO) species convert to less reactive and coordinatively saturated Rh(CO) by thermal treatment above 370 K. The =Rh(CO) species were characterized by an infrared band at 2013 cm(-1). An explanation of the mode of bonding of the rhodium monocarbonyl species to the zeolite surface is provided. Coordinatively unsaturated =Rh(CO) species captured N-2, H-2, and O-2 gas molecules near room temperature to produce a variety of mixed ligand rhodium surface complexes of the form Rh(CO)(N-2), Rh(CO)(H-2), Rh(CO)(H)(2), Rh(CO)(H), Rh(CO)(O), and Rh(O). Infrared band assignments for the new species are provided. The work provides new insight into the photochemical behavior of Rh(CO)(2) species supported on high-area zeolite materials and may improve our understanding of the role of active rhodium monocarbonyl species in the development of heterogeneous photocatalysts.