Langmuir, Vol.21, No.17, 7696-7701, 2005
Conformational transition of the core chain in radiation-modified polysilane micelles formed in selective solvents
Poly(methyl acrylate)-grafted poly(methyl-n-propylsilane.) (PMPrS-g-PMA) and poly(acrylic acid)-grafted PMPrS (PMPrS-g-PAA) were synthesized by gamma-ray-induced graft polymerization, and the association behavior of these graft copolymers was investigated in selective solvents composed of good and poor solvents for the PMPrS main chain.. Fluorescence spectroscopy with perylene as a fluorescent probe revealed that PMPrS-g-PAA in a water/THF mixed solvent self-assembles into micelles with a swollen core of PMPrS chains in the water content range of 50-95%. UV spectroscopy demonstrated that a further increase of the water content gives rise to the conformational transition of the PMPrS chains in the micelle core from the random conformation to the conformation that corresponds to that in the solid state at a water content of ca. 95%, independent of the grafting yield. Similar behavior was also observed in DMSO/THF solutions of PMPrS-g-PMA, for which the conformational transition occurred at the constant DMSO content of ca. 95%. These results indicate that solvatochromic behavior of polysilane, which is a characteristic feature of polysilane, proved to provide information on the inner structure of those micelles: PMPrS chains in the core undergo conformational transition as the content of the poor solvents for PMPrS increases, while maintaining the micelle structure.