Polymer, Vol.46, No.19, 7823-7833, 2005
Synthesis and characterization of poly(ester amide)s containing crystallizable amide segments
High molecular weight segmented poly(ester amide)s were prepared by melt polycondensation of 1,4-butanediol, dimethyl adipate and a preformed bisamide-diol based on 1,4-diaminobutane and epsilon-caprolactone. By varying the ratio of the bisamide-diol and 1,4-butanediol, a series of polymers was obtained with a hard segment content between 10 and 85 mol%. FT-IR and WAXD analysis revealed that the poly(ester amide)s crystallize in an alpha-type phase similar to the alpha-phase of even-even nylons. These polymers all have a micro-phase separated structure with an amide-rich hard phase and an ester-rich flexible soft phase. The polymers have a low and a high melt transition, corresponding with the melting of crystals comprising single ester amide sequences and two or more ester amide sequences, respectively. The low melt transition is between 58 and 70 degrees C and is independent of polymer composition. By increasing the hard segment content from 10 to 85 mol% the high melt transition increased from 83 to 140 degrees C while the glass transition temperature increased from - 45 to - 5 degrees C. Likewise, the elastic modulus increased from 70 to 524 MPa, the stress at break increased from 8 to 28 MPa while the strain at break decreased from 820 to 370%. Thermal and mechanical properties can thus be tuned for specific applications by varying the hard segment content in these segmented polymers. (c) 2005 Published by Elsevier Ltd.