화학공학소재연구정보센터
Inorganic Chemistry, Vol.44, No.18, 6393-6400, 2005
Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system
Zinc selenide nanoparticles (ZnSe NPs) were synthesized in the cavity of the cage-shaped protein apoferritin by designing a slow chemical reaction system, which employs tetraaminezinc ion and selenourea. The chemical synthesis of ZnSe NPs was realized in a spatially selective manner from an aqueous solution, and ZnSe cores were formed in almost all apoferritin cavities with little bulk precipitation, Three factors are found to be important for ZnSe NP synthesis in the apoferritin cavity: (1) the threefold channel, which selectively introduces zinc ion into the apoferritin cavity, (2) the apoferritin internal potential, which favors zinc ion accumulation in the cavity, and (3) the nucleation site, which nucleates ZnSe inside the cavity, The characterization of the synthesized ZnSe NPs by X-ray powder diffraction and energy-dispersive spectrometry revealed that the synthesized NPs are a collection of cubic ZnSe polycrystals. It was shown that the 500 degrees C heat treatment for 1 h under nitrogen gas transformed the polycrystalline ZnSe core into a single crystal, and single-crystal ZnSe NPs free of protein were obtained.