화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.109, No.39, 8732-8744, 2005
EPR and ENDOR study of radiation-induced radical formation in purines: Hypoxanthine hydrochloride monohydrate crystals X-irradiated at 10 K
Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) study of hypoxanthine(.)HCl(.)H(2)O crystals irradiated at low temperatures (10 K) identified three radical species. In these crystals, the parent molecules exist in a cationic form with a proton at N7. R1 was the product of net hydrogen addition to N3 and exhibited alpha-proton hyperfine couplings to HC2, HN1, HC8, and HN3. The coupling to HC2 has an isotropic component smaller than usual, evidently an indication that the bonds to C2 are nonplanar. R2 was the product of net hydrogen loss from N7, equivalent to the one-electron oxidation product of neutral hypoxanthine, and exhibited alpha-proton hyperfine couplings to HC2 and HC8. Both couplings are characteristic of planar bonding arrangements at the centers of spin. R3 was provisionally identified as the product of net hydrogen addition to O6 and exhibited hyperfine alpha-proton couplings to HC8 and NH1 To identify the set of radicals, the experiments employed four crystal types: normal, deuterated only at NH positions, deuterated at HC8 and NH positions, and deuterated at HC8 only. The low-temperature data also showed clear evidence for H/D isotope effects in formation and/or stabilization of all radicals. To aid and support the identifications, the experimental results were compared to DFT calculations performed on a variety of radical structures plausible for the parent molecule and molecular packing within the crystal.