Biotechnology Progress, Vol.21, No.5, 1380-1388, 2005
Alkaline protease production by an isolated Bacillus circulans under solid-state fermentation using agroindustrial waste: Process parameters optimization
Alkaline protease production using isolated Bacillus circulans under solid-state fermentation environment was optimized by using Taguchi orthogonal array (OA) experimental design (DOE) methodology to understand the interaction of a large number of variables spanned by factors and their settings with a small number of experiments in order to economize the process optimization. The software-designed experiments with an OA worksheet of L-27 was selected to optimize fermentation (temperature, particle size, moisture content and pH), nutrition (yeast extract and maltose), and biomaterial-related (inoculum size and incubation time) factors for the best production yields. Analysis of experimental data using Qualitek-4 methodology showed significant variation in enzyme production levels (32000-73000 units per gram material) and dependence on the selected factors and their assigned levels. Validation of experimental results on alkaline protease production by this bacterial strain based on DOE methodology revealed 51% enhanced protease production compared to average performance of the fermentation, indicating the importance of this methodology in the evaluation of main and interaction effects of the selected factors individually and in combination for bioprocess optimization.