Chemical Engineering Communications, Vol.192, No.10-12, 1598-1620, 2005
Structure optimization of a circulating moving bed reactor
A stress distribution model for a liquid-solid circulating moving bed reactor that consists of a bottom reaction chamber, a top regeneration chamber, a coupling standpipe, a particle transportation system, and a bottom standpipe is established based on the equations of continuity and momentum balance. Simulations show that the stress concentration regions are at the bottom of the regeneration chamber and the coupling standpipe. To reduce the maximal stress and increase the operation flexibility in a reactor for the 2000-ton-per-year production of linear alkylbenzene, the regeneration chamber should have a low height-to-radius ratio (about 9), a suitable half-conical angle between 28 degrees and 35 degrees, and standpipe radius of about 0.05 m.