Desalination, Vol.180, No.1-3, 5-14, 2005
Mechanical analysis of hollow fiber membrane integrity in water reuse applications
In order to gain insight into membrane fiber failure (i.e., loss of integrity), properties of five hollow fiber membranes and four hollow fiber modules were evaluated. Specifically, membrane material, membrane symmetry, fiber modulus of elasticity, fiber diameter and thickness, module potting technique, module flow pattern (inside-out or outside-in), and coliform breakthrough were investigated. The approach combined evaluation of the above properties with mathematical modeling of structure-fluid interactions to comprehensively evaluate the properties most important for maintaining hollow fiber membrane integrity. Tensile strength testing revealed that the strongest fiber was an asymmetric polyacrylonitrile membrane fiber. The weakest fiber was a symmetric polyethylene membrane fiber. Pilot plant testing on the four membrane modules revealed that membrane symmetry may be a more important factor than potting technique for hollow fiber integrity. Results from the SEM and tensile testing were used as input to a finite element analysis model used to evaluate time-dependent structure-fluid interactions. It was found that additional stresses at the juncture of the potting material and the hollow fiber membranes exist. These stresses likely lead to the formation of fractures.