화학공학소재연구정보센터
Energy & Fuels, Vol.19, No.5, 1962-1970, 2005
Elastic and optical anisotropy of the single-coal monolithic high-temperature (HT) carbonization products obtained on a laboratory scale
The aim of the present study was to investigate the directional dependences of the elastic and optical properties of monolithic single-coal high-temperature (HT) carbonization products obtained on a laboratory scale (with very slow heating rate) from coals of different caking propensity. Sixteen monolithic HT carbonization products, mainly cokes, were produced in the Jenkner retort furnace using 16 various types of coals of varying rank (from 83.1 wt % carbon to 98.3 wt % carbon) with a Roga index (RI) in the range of 0-76. Coals were carbonized in the form of monolithic blocks. The physical parameters such as true density, porosity, ultrasonic velocity, and dynamic elastic moduli, as well as optical reflectance parameters (R-max, R-min, R-am), were determined for the resultant products. The elastic and optical properties of the HT carbonization products were related to their porosity and the rank of the parent coals. It was determined that the HT carbonization products exhibit the different directional properties of the studied parameters, and they can be divided into three groups, with respect to the observed differences. The properties of these groups were related to the parent coal rank and the caking propensity (i.e., to the RI value). Anisotropy of the coke matrix structure was determined to be important for discussion about the anisotropic properties of cokes.