Energy Conversion and Management, Vol.47, No.1, 19-34, 2006
Determination of unidirectional heat transfer coefficient during unsteady-state solidification at metal casting-chill interface
In this study, the interfacial heat transfer coefficient (IHTC) for vertically upward unidirectional solidification of a eutectic Al-Si casting on water cooled copper and steel chills was measured during solidification. A finite difference method (FDM) was used for solution of the inverse heat conduction problem (IHCP). Six computer guided thermocouples were connected with the chill and casting, and the time-temperature data were recorded automatically. The thermocouples were placed, located symmetrically, at 5 mm, 37.5 mm and 75 mm from the interface. As the lateral surfaces are very well heat isolated, the unidirectional solidification process starts vertically upward at the interface surface. The measured time-temperature data files were used by a FDM using an explicit technique. A heat flow computer program has been written to estimate the transient metal-chill IHTC in the IHCP. The experimental and calculated temperatures have shown excellent agreement. The IHTC during vertically upward unidirectional solidification of an Al-Si casting on copper and steel chills have varied between about 19-9.5 kW/m(2) K and 6.5-5 kW/m(2) K, respectively. (c) 2005 Elsevier Ltd. All rights reserved.