화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.68, No.4, 481-488, 2005
Optimization of erythritol and glycerol accumulation in conidia of Beauveria bassiana by solid-state fermentation, using response surface methodology
Entomopathogenic fungi are widely produced for use as mycoinsecticides. Therefore, improvement of the shelf life of fungal propagules under good and adverse conditions should be a pre-requisite of their production. In order to improve conidial physiology as well as mycoinsecticide efficiency, culture conditions may be varied. The Doehlert design was used to generate response surfaces with an estimation of the parameters of the quadratic model allowing the study of three different factors at a different number of levels. This experimental design was applied to optimize water activity (a(W)), pH, and fermentation time for Beauveria bassiana conidial production and accumulation of polyols in solid-state fermentation. Thus, it was possible to identify the region in the experimental range in which the optimum values of these parameters were simultaneously achieved. Maximal conidia production was achieved at pH 5-6 and a(W)=0.999. Under these conditions, polyol accumulation was 3 mg erythritol/g conidia and 29.6 mg glycerol/g conidia. However, maximal polyol accumulation was achieved at pH 4.5 and a(W) 0.950; erythritol production increased 33-fold and glycerol production 4.5-fold. Under these conditions conidia production was 1,000 times lower. The possibilities of increasing the quality of the biocontrol agent without neglecting yield are discussed.