Automatica, Vol.41, No.12, 2153-2159, 2005
Distributed optimal component fusion weighted by scalars for fixed-lag Kalman smoother
Based on the optimal fusion criterion in the linear minimum variance sense, a distributed optimal fusion fixed-lag Kalman smoother with a three-layer fusion structure is given for the discrete time-varying linear stochastic control systems with multiple sensors and correlated noises. Its components are estimated by scalar weighting fusion, respectively. It only requires in parallel a series of computations of the weighted scalars, and avoids the computations of the weighted matrices, so that the computational burden can obviously be reduced. Further, the steady-state fusion smoother is also given for the discrete time-invariant linear stochastic control systems. The scalar weights can be obtained by fusing once after all local estimations reach steady state. It can reduce the online computational burden. Also, the computation formulas of smoothing error cross-covariance matrices are given. Two simulation examples show the performance. (c) 2005 Elsevier Ltd. All rights reserved.
Keywords:multisensor;information fusion;optimal fusion criterion;distributed fusion Kalman smoother;steady-state fusion smoother;cross-covariance