Journal of Physical Chemistry A, Vol.109, No.47, 10786-10794, 2005
Mechanism for the gas-phase reaction between formaldehyde and hydroperoxyl radical. A theoretical study
We present a high-level theoretical study on the gas-phase reaction between formaldehyde and hydroperoxyl radical carried out using the DFT-B3LYP, QCISD, and CCSD(T) theoretical approaches in connection with the 6-311 +G(d,p), 6-311+G(2df,2p), and aug-cc-pVTZ basis sets. The most favorable reaction path begins with the formation of a pre-reactive complex and produces the peroxy radical CH2(OO)OH in a process that is computed to be exothermic by 16.8 kcal/mol. This reaction involves a process in which the oxygen terminal of the HO2 moiety adds to the carbon of formaldehyde, and, simultaneously, the hydrogen of the hydroperoxyl group is transferred to the oxygen of the carbonyl in a proton-coupled electron-transfer mechanism. Our calculations show that this transition state lies below the sum of the energy of the reactants, and we computed a rate constant at 300 K of 9.29 x 10(-14) cm(3) molecule(-1) s(-1), which is in good agreement with the experimental results. Also of interest in combustion chemistry, we studied the hydrogen abstraction process by HO2, the result of which is the formation of HCO + H2O2 We found two reaction paths with activation enthalpies close to 12 kcal/mol. For this process, we computed a rate constant of 1.48 x 10(-16) cm(3) molecule(-1) s(-1) at 700 K, which also agrees quite well with experimental results.