화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.46, 21749-21754, 2005
Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: A reaction mechanism analysis
A new type of amorphous helical carbon nanofibers has been synthesized using copper nanocatalysts and an acetylene gas source at atmospheric pressure. The nanofibers are grown at 468 K, which is the lowest temperature by ordinary metal-catalyzed thermal chemical vapor deposition of hydrocarbon, and exhibit a symmetric growth mode in the form of twin helices. IR, XRD, Raman, and C/H molar ratio analyses reveal a polymer-like structure with a weak trans-polyacetylene feature. The nanofibers are a mixture of solid polymers and a small amount of carbon. A reaction mechanism has been proposed on the basis of the previous studies of acetylene adsorption, desorption properties, and surface reactions on copper (111), (110), and (001) planes under ultrahigh-vacuum (UHV) conditions as well as the results obtained in our study. The reaction mechanism of acetylene on copper single-crystal surfaces under UHV conditions indeed reflects the reaction mechanism under practical catalytic conditions at atmospheric pressure. The nanofibers grow mainly via acetylene coupling to solid polymers on copper nanocrystal surfaces. Acetylene also couples to yield small amounts of liquid oligomers and gaseous products, and undergoes slight carbon deposition during the fiber growth.