화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.46, 21772-21778, 2005
Nonequilibrium bubbles in a flowing Langmuir monolayer
We investigate the nonequilibrium behavior of two-dimensional gas bubbles in Langmuir monolayers. A cavitation bubble is induced in liquid expanded phase by locally heating a Langmuir monolayer with an IR-laser. At low IR-laser power the cavitation bubble is immersed in quiescent liquid expanded monolayer. At higher IR-laser power thermo capillary flow around the laser-induced cavitation bubble sets in. The thermo capillary flow is caused by a temperature dependence of the gas/liquid line tension. The slope of the line tension with temperature is determined by measuring the thermo capillary flow velocity. Thermodynamically stable satellite bubbles are generated by increasing the surface area of the monolayer. Those satellite bubbles collide with the cavitation bubble. Upon collision the satellite bubbles either coalesce with the cavitation bubble or slide past the cavitation bubble. Moreover we show that the satellite bubbles can also be produced by the emission from the laser-induced cavitation bubbles.