Journal of Physical Chemistry B, Vol.109, No.46, 21971-21978, 2005
Intramolecular electron transfer in lysozyme studied by time-resolved chemically induced dynamic nuclear polarization
The kinetics of the chemically induced dynamic nuclear polarization (CIDNP) produced in reactions of hen lysozyme with photosensitizers have been studied for the native state of the protein at pH 3.8 and for two denatured states. The latter were generated by raising the temperature to 80 degrees C or by combining a temperature rise (to 50 degrees C) with the addition of chemical denaturant (10 M urea). Detailed analysis of the CIDNP time dependence on a microsecond time scale revealed that, in both denatured states, intramolecular electron transfer (IET) from a tyrosine residue to the cation radical of a tryptophan residue (rate constant k(f)) is highly efficient and plays a decisive role in the evolution of the nuclear polarization. To describe the observed CIDNP kinetics with a self-consistent set of parameters, IET in the reverse direction, from a tryptophan residue to a tyrosine residue radical (rate constant k(r)), has also to be taken into account. The IET rate constants determined by analysis of the CIDNP kinetics are, at 80 degrees C: k(f) = I x 10(5) s(-1) and k(r) = I x 10(4) s(-1); at 50 degrees C in the presence of 10 M urea: k(f) = 7 x 10(4) s(-1), k(r) = I x 10(4) s(-1). IET does not appear to influence the CIDNP kinetics of the native state.