Journal of Physical Chemistry B, Vol.109, No.47, 22608-22613, 2005
Application of the hypernetted chain approximation to the electrical double layer for 2 : 1 and 1 : 2 electrolytes
The equations needed to estimate the potential drop across the diffuse layer according to the hypernetted chain approximation (HNCA) are derived in this paper for 2:1 and 1:2 electrolytes at the restricted primitive level. It is shown that HNCA results can be expressed in the same format as the corresponding Gouy-Chapman equations with inclusion of two modifying functions. One function depends on the fraction of the solution volume occupied by the ions, and the other depends on the reciprocal thickness of the ionic atmosphere surrounding each ion. In addition, an expression for the potential profile in the diffuse layer for 2:1 and 1:2 electrolyte solutions is derived according to Gouy-Chapman theory. The modifying functions in the HNCA are then estimated using the Henderson-Blum approach for solutions containing ions with diameters of 300 and 400 pm for concentrations in the range from 0.1 to 2 M. It is shown that the Henderson - Blum approach is inadequate for systems with multivalent ions except for charge densities very close to the point of zero charge.