Journal of Physical Chemistry B, Vol.109, No.48, 22830-22835, 2005
Solution-phase synthesis and electrochemical hydrogen storage of ultra-long single-crystal selenium submicrotubes
Ultra-long single-crystalline trigonal selenium submicrotubes were synthesized using a facile one-step solution-phase approach with the assistance of nonionic surfactant Polyoxyethylene(20)sorbitan monolaurate (Tween-20), which turned out to be significant for the formation of ultra-long Se submicrotubes. XRD, Raman, SEM, and TEM were adopted to characterize the morphology, structure and phase composition of the as-prepared Se products. It was found that the length of the obtained Se submicrotubes was over 100 pm. By variation of the experimental parameters, the t-Se spheres, nanowires, and broken microtubes can be prepared. The possible growth mechanism of the ultra-long selenium submicrotubes was explained. In addition, we have also demonstrated that the synthesized Ultra-long t-Se submicrotubes using the Tween-20-assisted approach can electrochemically charge and discharge with the high capacity of 265 mAh/g (corresponding to 0.97 wt % hydrogen in SWNTs) under normal atmosphere at room temperature. Cyclic voltammetry was adopted to investigate the adsorption-ox idation behavior of ultra-long selenium submicrotubes. It was observed that the morphology of the synthesized selenium products had a remarkable influence on their capacity of electrochemical hydrogen storage. These differences in hydrogen storage capacity are likely due to the size and density of tubes as well as the microcosmic morphology of different Se samples. The as-obtained ultralong Se submicrotubes are expected to find wide applications in hydrogen storage, high-energy batteries, and optoelectronic, biologic, and catalytic fields as well as in the studies of structure-property relationships. This simple Tween-assisted approach might be extended to the preparations of one-dimensional nanostructures of tellurium and other anisotropic materials.