Journal of Physical Chemistry B, Vol.109, No.48, 22976-22984, 2005
Reaction of 1,2-dibromobenzene with the Si(111)-7x7 surface, a DFT study
Reaction between 1,2-dibromobenzene and the Si(111)-7 x 7 surface has been studied theoretically on the DFF(B3LYP/6-31G(d)) level. A 12-atom silicon cluster, representing two adatoms and one rest atom of the faulted half of the unit cell, was used to model the silicon surface. The first step of the reaction was a covalent attachment (chemisorption) of an intact 1,2-dibromobenzene molecule to the silicon cluster. Binding energies were calculated to be between 1.04 and 1.14 eV, depending on the orientation of the molecule. A second step of the reaction was the transfer of the Br atom to the silicon cluster. Activation energies for the transfer of the Br atom were calculated to be between 0.4 and 0.6 eV, suggesting that the thermal bromination reaction occurs on a microsecond time scale at room temperature. A third step of the reaction could be the transfer of the second Br atom of the molecule, the desorption of the organic radical, or the change of the adsorption configuration of the radical, depending on the original orientation of the adsorbed intact molecule. A novel, aromatic, two-a-bound adsorbed configuration of the C6H4 radical, in which a carbon ring of the radical is perpendicular to the silicon surface, has been introduced to explain previous experimental observations (Surf. Sci. 2004, 561, 11).