Journal of Physical Chemistry B, Vol.109, No.49, 23415-23418, 2005
Entropically mediated polyolefin blend segregation at buried sapphire and air interfaces investigated by infrared-visible sum frequency generation vibrational spectroscopy
The segregation behavior of binary polymer blends at hydrophilic solid sapphire and air interfaces was investigated by infrared-visible sum frequency generation (SFG) vibrational spectroscopy. SFG spectra were collected from a bulk miscible blend consisting of identical molecular weight (similar to 54 000) and similar surface free energy (29-35 dyn/cm) components of atactic polypropylene (aPP) and aspecific poly(ethylene-co-propylene) rubber (aEPR). Characteristic CH resonances of the blend were contrasted with those of the individual components at both buried (sapphire/polymer) and free (air/polymer) interfaces. Preferential segregation of the aPP component was observed after annealing at both air/polymer and sapphire/polymer interfaces. SFG spectra revealed ordering of the polymer backbone segments with the methylene (CH2) groups perpendicular to the surface at the sapphire interface and the methyl (CH3) groups upright at the air interface. The SFG results indicate that the surface composition can be determined from the peak intensities that are characteristic of each component and that conformational entropy played a likely role in surface segregation. aPP occupied a smaller free volume at the surface because of a statistically smaller segment length (aPP is more flexible and has a shorter length). In addition, the high density of the ordered CH3 side branches enhanced the surface activity by allowing the long-chain backbone segments of aPP to order at the surface.