- Previous Article
- Next Article
- Table of Contents
Journal of the American Chemical Society, Vol.127, No.45, 15983-15988, 2005
How stable is trans-cycloheptene?
There is a discrepancy between the observed and calculated stability of traps-cycloheptene (t-CHP). Generation of t-CHP has always led to its low-temperature (-40 degrees C) isomerization to cis-cycloheptene (c-CHP). However, force field and semiempirical calculations on the energy difference between the two isomers have suggested that t-CHP should be stable at room temperature. We performed a series of ab initio calculations, which predicted that the simple process of double bond rotation leading from t-CHP to c-CHP would have an activation barrier too high to permit isomerization below 100 C (35 kcal/mol). The validity of our calculation method on this very strained system was supported by the agreement between the calculation and the dynamics of the ring flip of the unsymmetrical t-CHP ring and the observed NMR shifts and coupling constants for the system. This incompatibility between the experimental behavior of t-CHP and our calculations led to our reexamining the decay kinetics of t-CHP. We find that this decay is second order and represents an "interrupted" dimerization, where an initially formed 1,4-biradical rapidly changes its geometry and cleaves back to produce two c-CHP molecules. This mechanism was supported by calculations of the 1,4-biradical potential energy surface.