Journal of the American Chemical Society, Vol.127, No.48, 16955-16960, 2005
In situ preparation of protein - "Smart" polymer conjugates with retention of bioactivity
Protein-polymer conjugates are widely used in biotechnology and medicine, and new methods to prepare the bioconjugates would be advantageous for these applications. In this report, we demonstrate that bioactive "smart" polymer conjugates can be synthesized by polymerizing from defined initiation sites on proteins, thus preparing the polymer conjugates in situ. In particular, free cysteines, Cys-34 of bovine serum albumin (BSA) and Cys-131 of T4 lysozyme V131C, were modified with initiators for atom transfer radical polymerization (ATRP) either through a reversible disulfide linkage or irreversible bond by reaction with pyridyl disulfide- and maleimide-functionalized initiators, respectively. Initiator conjugation was verified by electrospray-ionization mass spectroscopy (ESI-MS), and the location of the modification was confirmed by mu LC-MSMS (tandem mass spectrometry) analysis of the trypsin-digested protein macroinitiators. Polymerization of N-isopropylacrylamide (NIPAAm) from the protein macroinitiators resulted in thermosenstive BSA-polyNIPAAm and lysozyme-polyNIPAAm in greater than 65% yield. The resultant conjugates were characterized by gel electrophoresis and size exclusion chromatography (SEC) and easily purified by preparative SEC. The identity of polymer isolated from the BSA conjugate was confirmed by H-1 NMR, and the polydispersity index was determined by gel permeation chromatography (GPC) to be as low as 1.34. Lytic activities of the lysozyme conjugates were determined by two standard assays and compared to that of the unmodified enzyme prior to polymerization; no statistical differences in boactivity were observed.