화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.127, No.48, 17068-17078, 2005
Mechanistic insights into an unprecedented C-C bond activation on a Rh/Ga bimetallic complex: A combined experimental/computational approach
The unusual rearrangement of [RhCp*(GaCp*)(CH3)(2)] (1c) to [RhCp*(C5Me4Ga(CH3)(3))] (2) is presented and its mechanism is discussed in detail. C-13 MAS NMR spectroscopy revealed that the title reaction proceeds cleanly not only in solution but also in solid state, which supports a unimolecular reaction pathway. On the basis of H-1, C-13, and ROESY NMR spectroscopy as well as isolation and structural elucidation of the hydrolysis product, the compound [RhCp*(endo-eta(4)-C5Me5GaMe2)] (3a) was identified as a crucial reaction intermediate. DFT calculations on the B3LYP level of theory support this assignment and suggest a concerted C-C bond activation mechanism that topologically takes place at the gallium center. Furthermore, two fluxional processes of the reaction intermediate 3a were studied experimentally as well as by computational methods. First, a mechanism takes place similar to a ring-slipping process that exchanges a GaMe2 group between adjacent ring carbon atoms within the same Cp* ring. This process proceeds at a rate comparable to the NMR time scale and indeed is calculated to be energetically very favorable. Second, a unimolecular exchange process of the GaMe2 group between the two Cp* rings of 3a could be experimentally proven by the introduction of phenyl substituents as a label into the Cp* ligands at both sites, the rhodium as well as the gallium center. A series of experiments including deuteration studies and competition reactions was performed to substantiate the suggested mechanism being in accordance with DFT calculations on possible transition states.