화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.22, No.6, 882-888, November, 2005
Kinetic Analysis for Decomposition of 2,4-Dichlorophenol by Supercritical Water Oxidation
E-mail:
2,4-Dichlorophenol (2,4-DCP), as a halogenated model pollutant, was decomposed by using supercritical water oxidation (SCWO) in a batch reactor made of Hastelloy C-276. SCWO experiments for 2,4-DCP decomposition were performed in the range of 380-420 ℃, 230-280 bar and 0.074-0.221 mol/L H2O2. The effect of oxidant concentration on decomposition rate and efficiency was significant near the critical temperature of 380 ℃. However, the role of the oxidant concentration in the SCWO process decreased with an increase in temperature; also, excess oxidant played a key role in quite significantly decreasing the activation energy of 2,4-DCP oxidation. Variation of the reaction rate by the change of pressure was negligible even at a near critical temperature. The kinetic rate for the decomposition of 2,4-DCP in the SCWO process was well described by a simple first-order kinetic and global reaction rate model. From the SCWO experiments, the various intermediates identified with a GC/MS implied that the first reaction pathway for 2,4-DCP decomposition led to dimers such as dichlorophenoxyphenols, and the second led to single-ring and ringopening products.
  1. Armenante PM, Kafkewitz D, Lewandowski GA, Jou CJ, Water Res., 30, 681 (1999) 
  2. Cocero MJ, Alonso E, Sanz MT, J. Supercrit. Fluids, 24, 37 (2002) 
  3. Connoly JF, Chem. Eng. J., 13, 11 (1996)
  4. Gopalan S, Savage PE, AIChE J., 41(8), 1864 (1995) 
  5. Martino CJ, Savage PE, Environ. Sci. Technol., 33, 1911 (1999) 
  6. Japas ML, Franck EU, Phys. Chem., 89, 1268 (1985)
  7. Jianli Y, Savage PE, Environ. Sci. Technol., 34, 3191 (2000) 
  8. Juan RP, Lopez J, Nebot E, Martinez E, J. Hazard. Mater., 88, 95 (2001) 
  9. Konys J, Fodi S, Hausselt J, Schmidt H, Casal V, Corrosion, 55, 45 (1999)
  10. Kritzer P, Boukis N, Dinjus E, Corrosion, 54, 824 (1998)
  11. Lee G, Nunoura T, Matsumura Y, Yamamoto K, J. Supercrit. Fluids, 24, 239 (2002) 
  12. Lee HC, In JH, Hwang KY, Lee CH, Ind. Eng. Chem. Res., 43(13), 3223 (2004) 
  13. Lee HC, Kim JH, In JH, Lee CH, Ind. Eng. Chem. Res., 17, 6615 (2005) 
  14. Lin KS, Wang HP, Yang YW, Chemosphere, 39, 1385 (1999) 
  15. Martino CJ, Savage PE, Environ. Sci. Technol., 33, 1911 (1999) 
  16. Matsumura Y, Nunoura T, Urase T, Yamamoto K, J. Hazard. Mater., 73, 245 (2000) 
  17. Mitton DB, Yoon JH, Cline JA, Kim HS, Eliaz N, Latanision RM, Ind. Eng. Chem. Res., 39(12), 4689 (2000) 
  18. Mitton DB, Yoon JH, Latanision RM, Zairyo-to-Kankyo, 49, 130 (2000)
  19. Modell M, Standard Hand-book for Hazardous Wastes Treatment and Disposal, H.M. Freeman, ED. (1986)
  20. Goto R, Shiramizu D, Kodama A, Hirose T, Ind. Eng. Chem. Res., 38(11), 4500 (1999) 
  21. Goto M, Nada T, Kodama A, Hirose T, Ind. Eng. Chem. Res., 38(5), 1863 (1999) 
  22. Ormad MP, Ovelleiro JL, Kiwi J, Appl. Catal. B: Environ., 32(3), 157 (2001) 
  23. Kritzer P, Dinjus E, Chem. Eng. J., 83(3), 207 (2001) 
  24. Portela JR, Nebot E, de la Ossa EM, Chem. Eng. J., 81(1-3), 287 (2001) 
  25. Quan X, Shi H, Wang J, Qian Y, Chemosphere, 50, 1069 (2003) 
  26. Ruokang L, Phillip ES, David S, AIChE J., 39, 178 (1993) 
  27. Sako T, Sugeta T, Otake K, Sato M, Tsugumi M, Hiaki T, Hongo M, J. Chem. Eng. Jpn., 30(4), 744 (1997) 
  28. Savage PE, Yu JL, Stylski N, Brock EE, J. Supercrit. Fluids, 12(2), 141 (1998) 
  29. Mizuno T, Goto M, Kodama A, Hirose T, Ind. Eng. Chem. Res., 39(8), 2807 (2000) 
  30. Tang WZ, Huang CP, Water Res., 29, 745 (1995) 
  31. Uematsu M, Franf EU, J. Phys. Chem., 9, 1291 (1980)