- Previous Article
- Next Article
- Table of Contents
Korea-Australia Rheology Journal, Vol.17, No.4, 149-156, December, 2005
A phenomenological approach to suspensions with viscoelastic matrices
E-mail:
A simple constitutive model for viscoelastic suspensions is discussed in this paper. The model can be used to predict the rheological properties (relative viscosity and all stresses) for viscoelastic suspensions in shear and elongational flow, and the constitutive equations combine a “viscoelastic” behaviour component and a “Newtonian” behaviour component. As expected, the model gives a prediction of positive first normal stress difference and negative second normal stress difference; the dimensionless first normal stress difference strongly depends on the shear rate and decreases with the volume fraction of solid phase, but the dimensionless second normal stress difference (in magnitude) is nearly independent of the shear rate and increases with the volume fraction. The relative viscosities and all the stresses have been tested against available experimental measurements.
Keywords:constitutive model;viscoelastic suspension;relative viscosity;first normal stress difference;second normal stress difference;volume fraction
- Barnes HA, Rheology Reviews, 1, 1 (2003)
- Frankel NA, Acrivos A, Chem. Eng. Sci., 22, 847 (1967)
- Gadala-Maria F, Acrivos A, J. Rheol., 24, 799 (1980)
- Jenkins TJ, McTigue DF, Viscous fluctuations and the rheology of concentrated suspensions (unpublished manu-script). (1992)
- Krieger IM, Adv. Colloid Interface Sci., 3, 111 (1972)
-
Le Meins JF, Moldenaers P, Mewis J, Rheol. Acta, 42(1-2), 184 (2003)
- Leighton D, Acrivos A, J. Fluid Mech., 181, 415 (1987)
-
Mall-Gleissle SE, Gleissle W, McKinley GH, Buggisch H, Rheol. Acta, 41(1-2), 61 (2002)
- Metzner AB, J. Rheol., 29, 739 (1985)
- Nam JG, Hyun K, Ahn KH, Lee SJ, Rheological behaviour of hard sphere suspensions in a large shear flow, Proc. XIV Conf. Rheol. Seoul, SU65, 1-3. (2004)
- Nott PR, Brady JF, J. Fluid Mech., 275, 157 (1994)
- Ohl N, Gleissle W, J. Rheol., 37, 381 (1993)
-
Nhan PT, J. Rheol., 39(4), 679 (1995)
-
Phan-Thien N, Fan XJ, Khoo BC, Rheol. Acta, 38(4), 297 (1999)
- Philips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR, Phys. Fluids, A4(1), 30 (1992)
- Tanner RI, Engineering Rheology, Oxford U. Press, 273. (2000)
-
Tanner RI, J. Non-Newton. Fluid Mech., 102(2), 397 (2002)
-
Tanner RI, Qi FZ, J. Non-Newton. Fluid Mech., 127(2-3), 131 (2005)
- Zarraga IE, Hill DA, Leighton DT, J. Rheol., 44, 185 (1999)
-
Zarraga IE, Hill DA, Leighton DT, J. Rheol., 45(5), 1065 (2001)