화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.17, No.4, 171-180, December, 2005
Numerical simulations of elliptic particle suspensions in sliding bi-periodic frames
E-mail:
We present numerical results for inertialess elliptic particle suspensions in a Newtonian fluid subject to simple shear flow, using the sliding bi-periodic frame concept of Hwang et al. (2004) such that a particulate system with a small number of particles could represent a suspension system containing a large number of particles. We report the motion and configurational change of elliptic particles in simple shear flow and discuss the inter-relationship with the bulk shear stress behaviors through several example problems of a single, two-interacting and ten particle problems in a sliding bi-periodic frame. The main objective is to check the feasibility of the direct simulation method for understanding the relationship between the microstructural evolution and the bulk material behaviors.
  1. Fan XJ, Phan-Thien N, Zheng R, J. Non-Newton. Fluid Mech., 74(1-3), 113 (1998) 
  2. Glowinski R, Pan TW, Hesla TI, Joseph DD, Int. J. Multiph. Flow, 25(5), 755 (1999) 
  3. Hildebrand FB, Advanced Calculus for Applications, Prentice-Hall, New Jersey. (1976)
  4. Hwang WR, Hulsen MA, Meijer HEH, J. Comput. Phys., 194, 742 (2004) 
  5. Hwang WR, Hulsen MA, Meijer HEH, J. Non-Newton. Fluid Mech., 121(1), 15 (2004) 
  6. Hwang WR, Hulsen MA, Meijer HEH, Kwon TH, Direct numerical simulations of suspensions of spherical particles in a viscoelastic fluid in sliding tri-peri-odic domains, in Proceedings of the XIVth International Congress on Rheology, Seoul, Korea, August 22-27, CR 10.1-CR10.3 (2004)
  7. Larson RG, The structure and rheology of complex fluids, Oxford University Press. (1999)
  8. Lees AW, Edwards SF, J. Phys. C: Solid State Phys., 5, 1921 (1972) 
  9. Peskin CS, J. Comput. Phys., 10, 252 (1972) 
  10. Rahnama M, Koch DL, Shaqfeh ESG, Phys. Fluids, 2, 2093 (1995)
  11. YAMANE Y, KANEDA Y, DIO M, J. Non-Newton. Fluid Mech., 54, 405 (1994)