화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.17, No.4, 207-215, December, 2005
Microflow of dilute colloidal suspension in narrow channel of microfluidic-chip under Newtonian fluid slip condition
E-mail:
We present a finite difference solution for electrokinetic flow in rectangular microchannels encompassing Navier’s fluid slip phenomena. The externally applied body force originated from between the nonlinear Poisson-Boltzmann field around the channel wall and the flow-induced electric field is employed in the equation of motion. The basic principle of net current conservation is applied in the ion transport. The effects of the slip length and the long-range repulsion upon the velocity profile are examined in conjunction with the friction factor. It is evident that the fluid slip counteracts the effect by the electric double layer and induces a larger flow rate. Particle streak imaging by fluorescent microscope and the data processing method developed ourselves are applied to straight channel designed to allow for flow visualization of dilute latex colloids underlying the condition of simple fluid. The reliability of the velocity profile determined by the flow imaging is justified by comparing with the finite difference solution. We recognized the behavior of fluid slip in velocity profiles at the hydrophobic surface of polydimethylsiloxane wall, from which the slip length was evaluated for different conditions.
  1. Chun MS, Kwak HW, Korea-Aust. Rheol. J., 15(2), 83 (2003)
  2. Chun MS, Lee TS, Choi NW, J. Micromech. Microeng., 15, 710 (2005) 
  3. Chun MS, Lee S, Colloids Surf. A: Physicochem. Eng. Asp., 267, 86 (2005) 
  4. Cox RG, Brenner H, Chem. Eng. Sci., 23, 147 (1968) 
  5. DosRamos JG, Silebi CA, J. Colloid Interface Sci., 133, 302 (1989) 
  6. Ho BP , Leal LG, J. Fluid Mech., 65, 365 (1974) 
  7. Karniadakis GE, Beskok A, Micro Flows: Fundamentals and Simulation, Springer-Verlag, New York (2003)
  8. Lauga E, Stone HA, J. Fluid Mech., 489, 55 (2003) 
  9. Li D, Colloids Surf. A: Physicochem. Eng. Asp., 195, 35 (2001) 
  10. McDonald JC, Whitesides GM, Accounts Chem. Res., 35, 491 (2002) 
  11. Oddy MH, Santiago JG, Mikkelsen JC, Anal. Chem., 73, 5822 (2001) 
  12. Probstein RF, Physicochemical Hydrodynamics: An Introduction, Wiley, New York. (1994)
  13. Rice CL, Whitehead R, J. Phys. Chem., 69, 4017 (1965)
  14. Stone HA, Stroock AD, Ajdari A, Ann. Rev. Fluld Mech., 36, 381 (2004) 
  15. Taylor JA, Yeung ES, Anal. Chem., 65, 2928 (1993) 
  16. Tretheway DC, Meinhart CD, Phys. Fluids, 14, L9 (2002) 
  17. Tretheway DC, Meinhart CD, Phys. Fluids, 16, 1509 (2004) 
  18. Watanabe K, Udagawa Y, Udagawa H, J. Fluid Mech., 381, 225 (1999) 
  19. Werner C, Korber H, Zimmermann R, Dukhin S, Jacobasch HJ, J. Colloid Interface Sci., 208(1), 329 (1998) 
  20. Yang C, Li DQ, J. Colloid Interface Sci., 194(1), 95 (1997) 
  21. Zhu Y, Granick S, Phys. Rev. Lett., 87, 096105 (2001) 
  22. Zhu Y, Granick S, Phys. Rev. Lett., 88, 106102 (2002)