화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.50, No.12, 2043-2047, 2005
An efficient sequential linear quadratic algorithm for solving nonlinear optimal control problems
We develop a numerically efficient algorithm for computing controls for nonlinear systems that minimize a quadratic performance measure. We formulate the optimal control problem in discrete-time, but many continuous-time problems can be also solved after discretization. Our approach is similar to sequential quadratic programming for finite-dimensional optimization problems in that we solve the nonlinear optimal control problem using sequence of linear quadratic subproblems. Each subproblem is solved efficiently using the Riccati difference equation. We show that each iteration produces a descent direction for the performance measure, and that the sequence of controls converges to a solution that satisfies the well-known necessary conditions for the optimal control.