화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.50, 24016-24024, 2005
Pneumatochemical impedance spectroscopy. 1. Principles
Pneumatochemical impedance spectroscopy (PIS) is the indirect transposition of electrochemical impedance spectroscopy (EIS) to solid-gas reactions. In PIS analysis, an analogy is made between pressure and electrical potential on one hand and gas flow and electric current on the other hand, and pneumatochemical transfer functions are derived from gas-phase measurements. Potentially, this spectroscopy can be used to analyze the dynamics of any solid-gas system including adsorption (surface) and absorption (bulk) phenomena, gas (H-2) permeation across metallic membranes, and electrocatalysis in gaseous fuel cells. Hydrogen absorption by intermetallic compounds (IMCs), a process of great practical interest for hydrogen storage applications, is more specifically considered in this paper, and the kinetic equations derived in this work pertain only to this case. Whereas classical electrochemical impedance measurements are performed using an harmonic analyzer and monochromatic potential (potentiostatic mode) or current (intentiostatic mode) perturbations, PIS investigation of the dynamics of IMC-H-2(g) Systems is more conveniently performed using Sievert's-type gas distribution apparatus (SGDA) and polychromatic pressure perturbation signals. This is first because monochromatic isothermal pressure modulations cannot be easily obtained experimentally over the frequency domain of interest and, second, because most IMC-H-2(g) systems exhibit strongly nonlinear behaviors in two-phase domains (hysteresis), and this proscribes harmonic analysis. A further benefit of using SGDA and nonharmonic perturbations is that kinetic and thermodynamic information are collected simultaneously during the same experiment. The measurement and modeling of the pneumatochemical transfer functions associated with IMC-H2(g) systems, both in solid solution and two-phase domains, are discussed in this paper which is organized in two parts. The principles of PIS analysis, based on the theory of linear and time-invariant systems, are presented in the first part. The dynamics of hydrogen sorption by metals and IMCs is analyzed in the second part, where a detailed analysis of the multistep reaction paths involved in sorption mechanisms is proposed.