화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.127, No.51, 18121-18132, 2005
A stereoelectronic effect on turn formation due to proline substitution in elastin-mimetic polypeptides
Stereoelectronic effects have been identified as contributing factors to the conformational stability of collagen-mimetic peptide sequences. To assess the relevance of these factors within other protein structural contexts, three polypeptide sequences were prepared in which the sequences were derived from the canonical repeat unit (Val-Pro-Gly-Val-Gly) of the protein material elastin. These elastin-mimetic polypeptides, elastin-1, elastin-2, and elastin-3, incorporate (2S)-proline, (2S,4S)-4-fluoroproline, and (2S,4R)-4-fluoroproline, respectively, at the second position of the elastin repeat. Calorimetric and spectroscopic investigations of these three polypeptides indicate that the incorporation of the substituted proline residues had a dramatic effect upon the self-assembly of the corresponding elastin peptide. The presence of (2S,4R)-4-fluoroproline in elastin-3 lowered the temperature of the phase transition and increased the type II beta-turn population with respect to the parent polypeptide, while the presence of (2S,4S)-4-fluoroproline in elastin-2 had the opposite effect. These results suggest that stereoelectronic effects could either enhance or hinder the self-assembly of elastin-mimetic polypeptides, depending on the influence of the proline analogue on the energetics of the beta-turn conformation that develops within the pentapeptide structural repeats above the phase transition. Density functional theory (DFT) was employed to model three possible turn types (beta(I)-,beta(II)-, and inverse gamma-turns) derived from model peptide segments (MeCO-Xaa-Gly-NHMe) (Xaa = Pro, 4S-F-Pro, or 4R-F-Pro) corresponding to the turn-forming residues of the elastin repeat unit (Val-Pro-Gly-Val-Gly). The results of the these calculations suggested a similar outcome to the experimental data for the elastin-mimetic polypeptides, in that type II beta-turn structures were stabilized for peptide segments containing (2S,4R)-fluoroproline and destabilized for segments containing (2S,4S)fluoroproline relative to the canonical proline residue.