Journal of the American Chemical Society, Vol.128, No.2, 517-525, 2006
Infrared spectroscopy of phenylalanine Ag(I) and Zn(II) complexes in the gas phase
Infrared multiple-photon dissociation (IR-MPD) spectroscopy has been applied to singly-charged complexes involving the transition metals Ag+ and Zn2+ with the aromatic amino acid phenylalanine. These studies are complemented by DFT calculations. For [Phe+Ag](+) the calculations favor a tridentate charge solvation N/O/ring structure. The experimental spectrum strongly supports this as the predominant binding geometry and, in particular, rules out a significant presence of the salt-bridge conformation. Zn2+ forms a deprotonated dimer complex with Phe, [Zn+Phe(2)-H](+), in which the +2 oxidation state serves as a useful biomimetic model for zinc protein sites. A number of low-energy conformations were located, of which the lowest-energy conformer predicted by the calculations involves a Phe ligand deprotonated on the carboxylic acid, while the other Phe ligand is in the tridentate charge solvation conformation. The calculated IR spectrum of this conformer gives a close fit to the experimental spectrum, strongly supporting this as the predominant binding geometry. This most stable calculated complex is characterized by N/O/ring metal chelation with a tetrahedral-type coordination core of Zn2+ to N and O of both ligands. Another similar tightly chelated structure shows a square-planar-type coordination core, but this structure is computed to be less stable and gives a less satisfactory match to the experimental spectrum. This preference for the tetrahedral geometry of the Lewis-basic atomic ligands parallels the common Zn(II) coordination geometry in proteins. The number of clearly identifiable peaks resolved in the IR-MPD spectra as well as the much-improved matches between the observed spectra and the DFT-calculated spectra of the most stable geometries compared to previous studies are noteworthy for systems of this size and complexity. These results demonstrate that IR spectroscopy of transition metal-amino acid complexes in combination with DFT calculations is a very powerful structural tool, readily applicable to biomimetic systems that model, for example, the reaction centers of proteins in the solvent-free environment. In addition, we present a novel ion-capturing method for Fourier transform ion cyclotron resonance mass spectrometry which removes the necessity of a buffer gas pulse, while allowing ion trapping at moderate voltages with apparently reduced collisional excitation of the ions.