화학공학소재연구정보센터
Langmuir, Vol.22, No.3, 1038-1047, 2006
Heteroaggregation in binary mixtures of oppositely charged colloidal particles
Heteroaggregation (or heterocoagulation) rate constants have been measured in mixtures of well-characterized colloidal particles of opposite charge with multiangle static and dynamic light scattering. This technique permits routine measurements of absolute heteroaggregation rate constants, also in the presence of homoaggregation. Particularly with multiangle dynamic light scattering, one is able to estimate absolute heteroaggregation rate constants accurately in the fast aggregation regime for the first time. Heteroaggregation rate constants have also been measured over a wide range of parameters, for example, ionic strength and different surface charge densities. Amidine latex particles, sulfate latex particles, and silica particles have been used for these experiments, and they were well characterized with respect to their charging and homoaggregation behavior. It was shown that heteroaggregation rate constants of oppositely charged particles increase slowly with decreasing ionic strength, and provided the surface charge is sufficiently large, the rate constant is largely independent of the surface charge. These trends can be well described with DLVO theory without adjustable parameters.