화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.17, No.1, 12-15, February, 2006
반응 결정화에 의한 실리카 미립자 합성에 관한 연구
The Study on the Preparation of the Silica Particles by the Reactive Crystallizati
E-mail:
초록
본 연구의 목적은 물유리에 의해 제조된 실리카 미립자의 평균입도와 입도분포에 미치는 반응조건, 용매 및 계면 활성제의 영향을 조사하는 것이다. 실리카 미립자는 다양한 종류의 계면활성제와 분산용매를 사용하는 에멀젼법에 의해 제조하였다. 계면활성제로는 비이온성인 Span 20, Span 40, Span 60 및 Span 80을 사용하였으며, 분산용매로는 알킬그룹인 n-Hexane, n-Heptane, iso-Octane 및 n-Decane을 사용하였다. 실험결과에 의하면 유화교반속도에 따른 실리카 미립자의 평균 입경은 교반속도가 증가함에 따라 감소하였으며, 일정한 입경의 에멀젼을 형성하기 위한 최적의 유화교반시간은 약 6 min임을 알 수 있었다. 생성된 실리카 미립자의 평균입경은 사용된 용매의 분자량이 증가함에 따라 감소하며, 사용한 계면활성제의 hydrophobic lipophilic balance(HLB) 값이 감소함에 따라 증가하였다.
The purpose of this study was to investigate the effect of reaction conditions, solvents, and surfactants on the average size and size distribution of silica particles in preparing silica fine powders by sodium silicate. Silica fine particles were synthesized by varying kinds of solvents and surfactants using the emulsion method. Span 20, Span 40, Span 60, and Span 80 were used as nonionic surfactants, Dispersing solvents were n-Hexane, n-Heptane, iso-Octane, and n-Decane of the alkane group. In these experiments, it was known that the optimum dispersion stirring time to form the emulsion of the constant size was around 6 min. The mean sizes of silica particles, at a variety of the dispersion stirring speeds, decreased as the dispersion stirring speed increased. Also, in the case of the solvents, the size of the formed silica particles decreased when the molecular weight of the solvent increased. Lastly, in the case of the surfactants, the mean size of silica particles increased as the hydrophobic lipophilic balance (HLB) value of the surfactant decreased.
  1. Sakka S, Iii G, Tomozawa M, Doremus R, Treaties on Materials Science and Technology, 22, 129-167, Academic Press, New York (1982)
  2. Sakka S, Kamiya K, Proc. Int. Symp. Factors Densificat. Sinter. Ozide Non-Oxide Ceram. (S. Somiya and S. Saito, eds), Tokyo Institute of Technology, 101-109, Tokyo (1978)
  3. Mark HF, Encyclopedia of Polymer Science and Engineering, 2nd. Ed., 787, Wiley (1987)
  4. Wilcox DL, Berg M, MRS Symp. Proc., 372, 3 (1995)
  5. Bogush GH, Tracy MA, Zukoski IV CF, J. Non-Cryst. Solids, 104, 95 (1988) 
  6. Tan CG, Bowen BD, Epstein N, J. Colloid Interface Sci., 118, 290 (1987) 
  7. Stober W, Flink A, J. Colloid Interface Sci., 26, 62 (1988) 
  8. Ring TA, Chem. Eng. Sci., 39, 1731 (1984)