- Previous Article
- Next Article
- Table of Contents
Journal of Industrial and Engineering Chemistry, Vol.12, No.2, 165-174, March, 2006
Design of Nanostructured Electrocatalysts for Direct Methanol Fuel Cells
E-mail:
Due to their excellent catalytic activity with respect to methanol oxidation on platinum at low temperature, platinum nanosized catalysts have been a topic of great interest for use in direct methanol fuelcells (DMFCs). Because pure platinum is readily poisoned by CO, a by -product of methalol electrooxidation, and is extremely expensive, a number of efforts to design and characterize Pt-based alloy nanosized catalsts or Pt nanophase-support composites have been attempted in order to reduce or relieve the CO poisoning effect. In this review paper, we summarize these efforts based upon our recent research results. The Pt-based nanocatalysts were prepared through chemical synthesis and thin-film technology, and were charaterized using a variety of analyses. According to bifunctional mechanism, it was concluded that good alloy formation with a second methl (e.g., Ru), as well as the metallic state and the optimum portion of Ru in the anodecatalyst, contribute to the enhanced catalytic activity for methanol electrooxidation. In addition, we found that the modified dldctronic properties of platinum in Pt alloy electrodes, as well as the surface and bulk structures of Pt alloys in suitable compositions, could be attributed to the higher catalytic activity for methanol electrooxdation. The proton conductiog contribution of nanosized electrocatalysts should also be considered to be excellent in methanol electrooxidation (spillover effect). Finally, we confirmed the ensemble effect, which combined all of the effects listed above, in Pt-based nanocatalysts; PtRuRhNi and PtRuWO3, especially, contribute to an enhanced catalytic activity.
- Kordesch K, Simader G, Fuel Cells Their Appl. (1998)
- Hirschenhofer JH, Stauffer DB, Engleman RR, Klett MG, Fuel Cell Handbook, 4th Edn., DOE/FETC-99/1076 (1998)
- Larminie J, Dicks A, Fuel Cell Systems Explained, Wiley (2000)
- Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE, Science, 280(5370), 1735 (1998)
- Kim JG, J. Ind. Eng. Chem., 7(1), 58 (2001)
- McGrath KM, Surya Prakash GK, Olah GA, J. Ind. Eng. Chem., 7, 1063 (2004)
- Kim HJ, Lim TH, J. Ind. Eng. Chem., 7, 1081 (2004)
- Kim MS, Lee SJ, Kang JU, Bae KJ, J. Ind. Eng. Chem., 11(2), 187 (2005)
- Wieckowski A, Interfacial Electrochemistry, Marcel-Dekker (1999)
- Ross PN, Electroanalysis (1998)
- Watanabe M, Motoo S, J. Electroanal. Chem., 60, 275 (1975)
- Herrero E, Franaszczuk K, Wiekowski A, J. Phys. Chem. B, 98, 5074 (1998)
- Ley KL, Liu RX, Pu C, Fan QB, Leyarovska N, Segre C, Smotkin ES, J. Electrochem. Soc., 144(5), 1543 (1997)
- Gurau B, Viswanathan R, Liu RX, Lafrenz TJ, Ley KL, Smotkin ES, Reddington E, Sapienza A, Chan BC, Mallouk TE, Sarangapani S, J. Phys. Chem. B, 102(49), 9997 (1998)
- Goodenough JB, Manoharan R, Shukla AK, Ramesh KV, Chem. Mater., 1, 391 (1989)
- Toda T, Igarashi H, Uchida H, Watanabe M, J. Electrochem. Soc., 146(10), 3750 (1999)
- Rodriguez JA, Goodman DW, Science, 257, 897 (1992)
- Jinang X, Permeter JE, Estrada CA, Goodman DW, Surf. Sci., 249, 44 (1991)
- Ishikawa Y, Liao MS, Cabrera CR, Surf. Sci., 463, 66 (2000)
- Tseung ACC, Chen KY, Catal. Today, 38(4), 439 (1997)
- Hobbs BS, Tseung ACC, Nature, 222, 556 (1969)
- Park KW, Choi JH, Lee SA, Pak C, Chang H, Sung YE, J. Catal., 224(2), 236 (2004)
- Park KW, Choi JH, Ahn KS, Sung YE, J. Phys. Chem. B, 108(19), 5989 (2004)
- Watanabe M, Saegusa S, Stonehart P, J. Electroanal. Chem., 271, 213 (1989)
- Watanabe M, Uchida M, Motoo S, J. Electroanal. Chem., 229, 395 (1987)
- Bonnemann H, Brijoux W, Brinkmann R, Dinjus E, Jouen T, Korall B, Angew. Chem.-Int. Edit., 30, 1312 (1991)
- Gotz M, Wendt H, Electrochim. Acta, 43(24), 3637 (1998)
- Schmidt TJ, Noeske M, Gasteiger HA, Behm RJ, Britz P, Brijoux W, Bonnemann H, Langmuir, 13(10), 2591 (1997)
- Lee SA, Park KW, Choi JH, Kwon BK, Sung YE, J. Electrochem. Soc., 149, 1299 (2002)
- Lee SA, Park KW, Kwon BK, Sung YE, J. Ind. Eng. Chem., 9(1), 63 (2003)
- Grunes J, Zhu J, Anderson EA, Somorjai GA, J. Phys. Chem. B, 106(44), 11463 (2002)
- Park KW, Choi JH, Kwon BK, Lee SA, Sung YE, Ha HY, Hong SA, Kim H, Wieckowski, J. Phys. Chem., 106, 1869 (2002)
- Park KW, Choi JH, Sung YE, J. Phys. Chem. B, 107(24), 5851 (2003)
- Park KW, Ahn KS, Choi JH, Nah YC, Kim YM, Sung YE, Appl. Phys. Lett., 81, 907 (2002)
- Park KW, Ahn KS, Choi JH, Nah YC, Sung YE, Appl. Phys. Lett., 82, 1090 (2003)
- Rolison DR, Hagans PL, Swider KE, Long JW, Langmuir, 15(3), 774 (1999)
- Long JW, Stroud RM, Swider-Lyons KE, Rolison DR, J. Phys. Chem. B, 104(42), 9772 (2000)
- Dmowski W, Egami T, Swider-Lyons KE, Love CT, Rolison DR, J. Phys. Chem. B, 106(49), 12677 (2002)
- Park KW, Sung YE, J. Phys. Chem. B, 109(28), 13585 (2005)
- Kim TW, Park SJ, Jones LE, Toney MF, Park KW, Sung YE, J. Phys. Chem. B, 109(26), 12845 (2005)
- Choi JH, Park KW, Kwon BK, Sung YE, J. Electrochem. Soc., 150, 973 (2003)
- Park KW, Ahn KS, Nah YC, Choi JH, Sung YE, J. Phys. Chem. B, 107(18), 4352 (2003)
- Park KW, Sung YE, J. Appl. Phys., 94, 7276 (2003)
- Park KW, Sung YE, J. Vac. Sci. Technol. B, 22(6), 2628 (2004)
- Park KW, Inorg. Chem., 44(9), 3190 (2005)