Journal of the Korean Industrial and Engineering Chemistry, Vol.17, No.2, 210-216, April, 2006
광양만 연안 퇴적토 중의 다환방향족탄화수소류의 분포특성
Distribution Characteristics of Polycyclic Aromatic Hydrocarbons in the Sediments of Kwangyang Bay in Korea
E-mail:
초록
광양만 연안 표면 퇴적토를 대상으로 미국 EPA가 선정한 유해성 우선물질 16종 PAHs 화합물에 대한 특성 및 모니터링 조사를 수행하였다. 선정된 23개 지점에 대한 PAHs 조사결과 농도 수준은 최소 0.01에서 최고 171.39mg/kg 수준이었으며, 평균값은 8.13 ± 24.8 mg/kg 이었다. 광양만 PAHs의 주요 유입원은 광양제철 옆 태인도, 수어천, 그리고 여수산업단지 내의 월래천이었으며, 오염수준은 각각 114.81 mg/kg, 38.37 mg/kg, 19.05 mg/kg로 측정되었다. 또한, 세부분으로 나뉜 퇴적토 입자크기에 따른 PAHs 분석결과 입자크기가 작고 퇴적토 내 유기물함량과의 관계에서는 함량이 높을수록 PAHs의 오염도도 증가하는 양의 상관관계를 보였다. LMW/HMW, Phe/Ant, Fle/Pyr PAHs 농도비를 이용한 PAHs 발생원에 대한 연구 결과는 광양만 전역에서 열분해 산물의 특성을 나타냈고, 일부 지역에서 열분해 산물과 유류산물의 혼합된 구성형태를 관찰할 수 있었다. 이외에 광양만 PAHs 고정 유입원으로 보이는 세 지점에대한 저서생태계에 미치는 독성영향평가에서는 발암가능성이 높은 PAHs가 주로 축척된
태인도가 ERM 수준이상으로 나타났고, 수어천과 월래천은 ERL 수준이었다.
The concentrations of 16 priority PAHs (US EPA standard) were analyzed in the surface sediments obtained from 23 sampling sites near Kwangyang Bay in Korea. There was a local variability in the total PAHs ranged from 0.01 to 171.39 mg/kg, with a mean value of 8.13 ± 24.8 mg/kg. The major pollution sources of PAHs near Kwanyang Bay were Taeindo, Sueo stream and Wallae stream, whose concentrations were 114.81, 38.37 mg/kg and 19.05 mg/kg, respectively. It showed that PAHs concentrations were increased with the decrease of particle size and with the increase of organic carbon contents in three fractioned sediments. From the analysis of PAHs source using LMW/HMW, Phe/Ant, and Fla/Pyr, pyrolysis by-products were mostly showed in Kwangyang Bay and some place showed the mixure of pyrolysis by-products, and crude oil by-products. Besides, the toxic effects assessment on benthic ecosystem for three major pollution sources showed that the PAHs concentration of Taindo which was mainly accumulated with carcinogenic PAHs exceeds ERM value and the PAHs of Sueo and Wallae streams are the degree of ERL value.
- Birnbaum LS, Environ. Health Perspect., 102, 676 (1994)
- http://www.pops.int
- Guinan J, Charlesworth M, Service M, Oliver T, Mar. Pollut. Bull., 42, 1073 (2001)
- Neff JM, Polycyclic Aromatic Hydrocarbons in the Aquatic Environment; Sources, Fate and Biological Effects, Applied Science Publishers, London (1979)
- Yim UH, Hong SH, Shim WJ, Oh JR, Chang M, Mar. Pollut. Bull., 50, 319 (2005)
- Koh CH, Kim GB, Maruya KA, Anderson JW, Jones JM, Kang SG, Environ. Pollut., 111, 437 (2001)
- Kim GB, Maruya KA, Lee RF, Lee JH, Koh CH, Tanabe S, Mar. Pollut. Bull., 38, 7 (1999)
- Nam JJ, Song BH, Eom KC, Lee SH, Smith A, Chemosphere, 50, 1281 (2003)
- Chung HH, Jeong HS, Kim EY, Cho HI, Hwang JC, Choi SW, J. Environ. Sci., 13, 543 (2004)
- Karickhoff SW, Brown DS, Scott TA, Water Res., 13, 241 (1997)
- Means JC, Wood SG, Hassett JJ, Banwart WL, Environ. Sci. Technol., 14, 1524 (1980)
- Maruya KA, Risebrough RW, Horne AJ, Environ. Sci. Technol., 30, 2942 (1996)
- Prahl FG, Carpenter R, Geochim. Cosmochim., 47, 1013 (1983)
- Simpson CD, Harrington CF, Cullen WR, Environ. Sci. Technol., 32, 3266 (1998)
- Kleineidam S, Rugner H, Ligouis B, Grathwohl P, Environ. Sci. Technol., 33, 1637 (1999)
- Magi E, Bianco R, Ianni C, Carro MD, Environ. Pollut., 119, 91 (2002)
- Letellier M, Buzinsky H, Analyst, 124, 5 (1999)
- Evans KM, Gill RA, Robotham PW, Water Air Soil Pollut., 51, 13 (1990)
- Ahrens MJ, Depree CV, Mar. Pollut. Bull., 48, 341 (2004)
- Soclo HH, Garrigues P, Ewald M, Mar. Pollut. Bull., 40, 387 (2000)
- Olajire AA, Altenburger R, Kuster E, Brack W, Sci. Total Environ., 340, 123 (2004)
- Long ER, MacDonald DD, Smith SL, Calder FD, Environ. Manag., 19, 81 (1995)
- Swartz RC, Environ. Toxicol. Chem., 18, 780 (1990)