화학공학소재연구정보센터
Macromolecular Research, Vol.14, No.2, 214-219, April, 2006
Nafion Composite Membranes Containing Rod-Shaped Polyrotaxanes for Direct Methanol Fuel Cells
E-mail:
Cast Nafion-based composite membranes containing different amounts of organic, nanorod-shapedpolyrotaxane were prepared and characterized, with the aim of improving the properties of polymer electrolytemembranes for direct methanol fuel cell applications. Polyrotaxane was prepared using the inclusion-complex reactionbetween α-cyclodextrin and poly(ethylene glycol) (PEG) of different molecular weights. The addition of polyrotax-ane to Nafion changed the morphology and reduced the crystallinity. The conductivity of the composite membranesincreased with increasing polyrotaxane content up to 5wt%, but then decreased at higher polyrotaxane contents.Well-dispersed, organic polyrotaxane inside the membrane can provide a tortuous path for the transport of methanol,as the methanol permeability depends on the aspect ratio of polyrotaxane, which is controlled by the molecularweight of PEG. All of the Nafion-based, polyrotaxane composite membranes showed a higher selectivity parameterthan the commercial Nafion films did.
  1. Kreuer KD, J. Membr. Sci., 185(1), 29 (2001) 
  2. Kerres JA, J. Membr. Sci., 185(1), 3 (2001) 
  3. Tricoli V, Carretta N, Bartolozzi M, J. Electrochem. Soc., 147(4), 1286 (2000) 
  4. Kopitzke RW, Linkous CA, Anderson HR, Nelson GL, J. Electrochem. Soc., 147(5), 1677 (2000) 
  5. Jung DH, Myoung YB, Cho SY, Shin DR, Peck DH, Int. J. Hydrog. Energy, 26, 1263 (2001) 
  6. Kim D, Scibioh MA, Kwak S, Oh IH, Ha HY, Electrochem. Commun., 6, 1069 (2004) 
  7. Baglio V, Arico AS, Di Blasi A, Antonucci V, Antonucci PL, Licoccia S, Traversa E, Fiory FS, Electrochim. Acta, 50(5), 1241 (2005) 
  8. Honma I, Nakajima H, Nishikawa O, Sugimoto T, Nomura S, Solid State Ion., 162, 237 (2003) 
  9. Won J, Kang YS, Macromol. Symp., 204, 79 (2003) 
  10. Song MK, Park SB, Kim YT, Kim KH, Min SK, Rhee HW, Electrochim. Acta, 50(2-3), 639 (2004) 
  11. Chang JH, Park JH, Park GG, Kim CS, Park OO, J. Power Sources, 124(1), 18 (2003) 
  12. Kim DW, Choi HS, Lee C, Blumstein A, Kang Y, Electrochim. Acta, 50(2-3), 659 (2004) 
  13. Won J, Choi SW, Kang YS, Ha HY, Oh IH, Kim HS, Kim KT, Jo WH, J. Membr. Sci., 214(2), 245 (2003) 
  14. Honma I, Hirakawa S, Yamada K, Bae JM, Solid State Ion., 118(1-2), 29 (1999) 
  15. Nunes SP, Ruffmann B, Rikowski E, Vetter S, Richau K, J. Membr. Sci., 203(1-2), 215 (2002) 
  16. Chisholm BJ, Moore RB, Barber G, Khouri F, Hempstead A, Larsen M, Olson E, Kelley J, Balch G, Caraher J, Macromolecules, 35(14), 5508 (2002) 
  17. Harada A, KAachi M, Macromolecules, 23, 2821 (1990) 
  18. Song MK, Kim YT, Fenton JM, Kunz HR, Rhee HW, J. Power Sources, 117(1-2), 14 (2003) 
  19. Lee K, Ishihara A, Mitsushima S, Kamiya N, Ota K, J. Electrochem. Soc., 151(4), A639 (2004) 
  20. Won J, Park HH, Kim YJ, Choi SW, Ha HY, Oh IH, Kim HS, Kang YS, Ihn KJ, Macromolecules, 36(9), 3228 (2003) 
  21. Vargas MA, Vargas RA, Mellander BE, Electrochim. Acta, 44(24), 4227 (1999) 
  22. Lee JH, Won J, Oh IH, Ha HY, Cho EA, Kang YS, Macromol. Res., 14(1), 101 (2006)
  23. Harada A, Li J, Kamachi M, Macromolecules, 26, 5690 (1993)
  24. Moore III RB, Martin CR, Macromolecules, 21, 1334 (1988) 
  25. Gierke TD, Munn GE, Wilson FC, J. Polym. Sci. B: Polym. Phys., 19, 1687 (1981)
  26. Dimitrova P, Friedrich KA, Stimming U, Vogt B, Solid State Ion., 150(1-2), 115 (2002)