Macromolecular Research, Vol.14, No.2, 214-219, April, 2006
Nafion Composite Membranes Containing Rod-Shaped Polyrotaxanes for Direct Methanol Fuel Cells
E-mail:
Cast Nafion-based composite membranes containing different amounts of organic, nanorod-shapedpolyrotaxane were prepared and characterized, with the aim of improving the properties of polymer electrolytemembranes for direct methanol fuel cell applications. Polyrotaxane was prepared using the inclusion-complex reactionbetween α-cyclodextrin and poly(ethylene glycol) (PEG) of different molecular weights. The addition of polyrotax-ane to Nafion changed the morphology and reduced the crystallinity. The conductivity of the composite membranesincreased with increasing polyrotaxane content up to 5wt%, but then decreased at higher polyrotaxane contents.Well-dispersed, organic polyrotaxane inside the membrane can provide a tortuous path for the transport of methanol,as the methanol permeability depends on the aspect ratio of polyrotaxane, which is controlled by the molecularweight of PEG. All of the Nafion-based, polyrotaxane composite membranes showed a higher selectivity parameterthan the commercial Nafion films did.
Keywords:polymer electrolyte membrane;direct methanol fuel cells;Nafion;polyrotaxane;composite membranes
- Kreuer KD, J. Membr. Sci., 185(1), 29 (2001)
- Kerres JA, J. Membr. Sci., 185(1), 3 (2001)
- Tricoli V, Carretta N, Bartolozzi M, J. Electrochem. Soc., 147(4), 1286 (2000)
- Kopitzke RW, Linkous CA, Anderson HR, Nelson GL, J. Electrochem. Soc., 147(5), 1677 (2000)
- Jung DH, Myoung YB, Cho SY, Shin DR, Peck DH, Int. J. Hydrog. Energy, 26, 1263 (2001)
- Kim D, Scibioh MA, Kwak S, Oh IH, Ha HY, Electrochem. Commun., 6, 1069 (2004)
- Baglio V, Arico AS, Di Blasi A, Antonucci V, Antonucci PL, Licoccia S, Traversa E, Fiory FS, Electrochim. Acta, 50(5), 1241 (2005)
- Honma I, Nakajima H, Nishikawa O, Sugimoto T, Nomura S, Solid State Ion., 162, 237 (2003)
- Won J, Kang YS, Macromol. Symp., 204, 79 (2003)
- Song MK, Park SB, Kim YT, Kim KH, Min SK, Rhee HW, Electrochim. Acta, 50(2-3), 639 (2004)
- Chang JH, Park JH, Park GG, Kim CS, Park OO, J. Power Sources, 124(1), 18 (2003)
- Kim DW, Choi HS, Lee C, Blumstein A, Kang Y, Electrochim. Acta, 50(2-3), 659 (2004)
- Won J, Choi SW, Kang YS, Ha HY, Oh IH, Kim HS, Kim KT, Jo WH, J. Membr. Sci., 214(2), 245 (2003)
- Honma I, Hirakawa S, Yamada K, Bae JM, Solid State Ion., 118(1-2), 29 (1999)
- Nunes SP, Ruffmann B, Rikowski E, Vetter S, Richau K, J. Membr. Sci., 203(1-2), 215 (2002)
- Chisholm BJ, Moore RB, Barber G, Khouri F, Hempstead A, Larsen M, Olson E, Kelley J, Balch G, Caraher J, Macromolecules, 35(14), 5508 (2002)
- Harada A, KAachi M, Macromolecules, 23, 2821 (1990)
- Song MK, Kim YT, Fenton JM, Kunz HR, Rhee HW, J. Power Sources, 117(1-2), 14 (2003)
- Lee K, Ishihara A, Mitsushima S, Kamiya N, Ota K, J. Electrochem. Soc., 151(4), A639 (2004)
- Won J, Park HH, Kim YJ, Choi SW, Ha HY, Oh IH, Kim HS, Kang YS, Ihn KJ, Macromolecules, 36(9), 3228 (2003)
- Vargas MA, Vargas RA, Mellander BE, Electrochim. Acta, 44(24), 4227 (1999)
- Lee JH, Won J, Oh IH, Ha HY, Cho EA, Kang YS, Macromol. Res., 14(1), 101 (2006)
- Harada A, Li J, Kamachi M, Macromolecules, 26, 5690 (1993)
- Moore III RB, Martin CR, Macromolecules, 21, 1334 (1988)
- Gierke TD, Munn GE, Wilson FC, J. Polym. Sci. B: Polym. Phys., 19, 1687 (1981)
- Dimitrova P, Friedrich KA, Stimming U, Vogt B, Solid State Ion., 150(1-2), 115 (2002)