Journal of Physical Chemistry A, Vol.110, No.2, 589-599, 2006
Importance of anharmonicity, recrossing effects, and quantum mechanical tunneling in transition state theory with semiclassical tunneling. A test case: The H-2+Clhydrogen abstraction reaction
The hydrogen abstraction reaction from H, by the Cl atom is studied by means of the variational transition state theory with semiclassical tunneling coefficients on the BW2 potential energy surface. Vibrational anharmonicity and coupling between the bending modes are taken into account. The occurrence of trajectories that recross the transition state is estimated by means of the canonical unified statistical method and by classical trajectories calculations. Different semiclassical methods for tunneling calculations are tested. Our results show that anharmonicity has a small but nonnegligible effect on the thermal rate constants, recrossing can be neglected, and tunneling is adequately described by the least-action approximation, and less successfully by the large-curvature version 3 approximation. However, the large-curvature version 4 and small-curvature approximations lead to a severe underestimation of tunneling. Thermal rate constants calculated using transition state theory including anharmonicity and tunneling agree very well with accurate quantal thermal rate constants over a wide temperature range, although the improvement over the harmonic transition state theory with the microcanonically optimized semiclassical tunneling approximation (based on version 3 of the large-curvature tunneling method) used in a previous study of this reaction is only marginal.