Journal of Physical Chemistry B, Vol.110, No.4, 1872-1876, 2006
Solvent size effect on the depletion layer of a polymer solution near an interface
By varying polymer concentration phi(p)(0) and Flory-Huggins parameter X, the effect of solvent size on the depletion interaction between polymer coils and a hard wall was investigated by the real-space version of self-consistent field theory (SCFT). The depletion profiles and depletion thickness indicated that the depletion effect is strong in less good solvent with large molecular volume. Through the analysis of the respective free energies of polymer coils and solvent molecules, we found that the increment in the translation entropy of the solvent is the key to strengthening the depletion interaction. On the basis of the SCFT results, we define a solvent with volume about one to six times that of the polymer segment as a "middle-sized solvent". The density oscillations previously studied by Van der Gucht et al. and Maassen et al. were also observed in our simulation, and the addition of middle-sized solvent will magnify the amplitude of the oscillations. The solvent-size-dependent depletion interaction may be an explanation for the reduced entanglement and promoted crystallization behavior of polymer coils prepared from the solution with middle-sized solvent.