Journal of Applied Polymer Science, Vol.100, No.1, 625-633, 2006
Surface segregation of polyethylene in low-density polyethylene/ethylene-propylene-diene rubber blends: Aspects of component structure
Aspects of the molecular weight and its distribution, the branching of low-density polyethylene (LDPE), and the molecular composition of the ethylene-propylene-diene rubber (EPDM) matrix are presented in this article in terms of their influence on the surface segregation of polyethylene (PE) in elastomer/plastomer blends. All of the PEs studied, despite different weight-average molecular weights and degrees of branching, segregated to the surface of the LDPE/EPDM blends. Atomic force microscopy pictures demonstrated defective crystalline structures on the surface of the blends, which together with a decrease in the degrees of their bulk crystallinity and a simultaneous increase in their melting temperatures, pointed to a low molecular weight and a defective fraction of PE taking part in the surface segregation. The extent of segregation depended on the molecular structure of the EPDM matrix, which determined the miscibility of the components on a segmental level. The higher the ethylene monomer content in EPDM was, the lower was the PE content in the surface layer of the blends. The composition and structure of the surface layer was responsible for its lower hardness in comparison with the bulk of the blends studied. The surface gradient of the mechanical properties depended on the physicochemical characteristics of the components and the blend composition, which created the possibility of tailoring the LDPE/EPDM blends to dedicated applications. (c) 2006 Wiley Periodicals, Inc.