화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.100, No.2, 1344-1348, 2006
Chemical modification of nylon 6 and polyester fabrics by ozone-gas treatment
In a previous article, we reported on the ozone-gas treatment of wool and silk fabrics in relation to the gas-phase processing of textile fabrics. The treatment incorporated an oxygen element into the fiber surface and contributed to an increase in water penetration into the fabric. In this study, nylon 6 and polyester fabrics were treated with ozone gas in the same way as that of the wool and silk fabrics. The treatment incorporated much more oxygen into the fiber surface in the form of -COH and -COOH, as shown by electron spectroscopy for chemical analysis. Water penetration increased considerably with treatment, and the apparent dyeing rate and equilibrium dye uptake were also improved, especially for the polyester fabric, despite an increase in the crystallinity. Therefore, it seemed that the treatment brought about a change not only in the fiber surface but also in the internal structure of the fibers (the crystalline and amorphous regions) with regard to the dyeing behavior. Further, the mechanical characteristics of the ozone-gas-treated polyester and nylon 6 fabrics were measured with a Kawabata evaluation system apparatus. The shearing modulus and hysteresis widths increased with treatment, especially for the polyester fabric. Therefore, it was clear that the treatment caused a change in the fabric hand to crisp.