Powder Technology, Vol.161, No.2, 89-97, 2006
Predicting the pressure drop across the solids flow rate control device of a circulating fluidized bed
The control of the solids circulation rate in circulating fluidized beds (CFB) can be obtained by means of a mechanical valve located at the bottom of the return leg. The valve acts by provoking a pressure drop that depends on the degree of the opening. The aim of this work is to develop a predictive model for the pressure drop in a butterfly valve used as a control device for the solids circulation rate. A model has been developed and validated against experimental data obtained from a 0.1 m id, 6 m high CFB using a group B powder. The equations proposed by, Jones and Davidson [D.R.M. Jones, J.F. Davidson, The flow of particles from a fluidised bed through orifices, Rheologica Acta 4 (1965) 180] and Cheng et. al. [L. Cheng, P. Basu, Solids circulation rate prediction in a pressurized loop seal, in: K. Chen (Ed.), Chemical Engineering Research and Design, vol. 76, 1998, p. 761] to predict the discharge rate of granular solid through orifices have been modified to account for the shape of the openings in the valve. A corrective parameter, which is based on the dimensionless hydraulic diameter of the valve opening, has been introduced. Very good agreement with the experimental data was obtained. (C) 2005 Elsevier B.V. All rights reserved.